Extensions 1→N→G→Q→1 with N=C2 and Q=C22×Dic3

Direct product G=N×Q with N=C2 and Q=C22×Dic3
dρLabelID
C23×Dic396C2^3xDic396,218


Non-split extensions G=N.Q with N=C2 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C2.1(C22×Dic3) = C22×C3⋊C8central extension (φ=1)96C2.1(C2^2xDic3)96,127
C2.2(C22×Dic3) = C2×C4×Dic3central extension (φ=1)96C2.2(C2^2xDic3)96,129
C2.3(C22×Dic3) = C2×C4.Dic3central stem extension (φ=1)48C2.3(C2^2xDic3)96,128
C2.4(C22×Dic3) = C2×C4⋊Dic3central stem extension (φ=1)96C2.4(C2^2xDic3)96,132
C2.5(C22×Dic3) = C23.26D6central stem extension (φ=1)48C2.5(C2^2xDic3)96,133
C2.6(C22×Dic3) = D4×Dic3central stem extension (φ=1)48C2.6(C2^2xDic3)96,141
C2.7(C22×Dic3) = Q8×Dic3central stem extension (φ=1)96C2.7(C2^2xDic3)96,152
C2.8(C22×Dic3) = D4.Dic3central stem extension (φ=1)484C2.8(C2^2xDic3)96,155
C2.9(C22×Dic3) = C2×C6.D4central stem extension (φ=1)48C2.9(C2^2xDic3)96,159

׿
×
𝔽